Diversity and consequences of structural variation in the human genome

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altshuler, D., Donnelly, P. & The International HapMap Consortium.A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

    Article 

    Google Scholar
     

  • Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, S. S., Urban, A. E. & Mills, R. E. Structural variation in the sequencing era. Nat. Rev. Genet. 21, 171–189 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kosugi, S. et al. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 20, 117 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015). This paper describes the phase 3 SV release of the 1000 Genomes Project, which provided an unprecedented level of insight into the diversity of SVs in the global human population and has stood as one of the gold-standard multi-ancestry data sets in the SV field over the subsequent decade.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jacobs, P. A., Baikie, A. G., Court Brown, W. M. & Strong, J. A. The somatic chromosomes in mongolism. Lancet 1, 710 (1959).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tjio, J. H. & Levan, A. The chromosome number of man. Hereditas 42, 1–6 (1956).

    Article 

    Google Scholar
     

  • Warburton, D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am. J. Hum. Genet. 49, 995–1013 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, A. J. et al. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N. Engl. J. Med. 301, 592–595 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Funderburk, S. J., Spence, M. A. & Sparkes, R. S. Mental retardation associated with “balanced” chromosome rearrangements. Am. J. Hum. Genet. 29, 136–141 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, J.-W., Wang, T.-R. & Chuang, S.-M. An epidemiological and aetiological study of children with intellectual disability in Taiwan. J. Intellect. Disabil. Res. 42, 137–143 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Knight, S. J. L. et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet 354, 1676–1681 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iafrate, A. J. et al. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sebat, J. et al. Large-scale copy number polymorphism in the human genome. Science 305, 525–528 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarroll, S. A. et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E. & Pritchard, J. K. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hehir-Kwa, J. Y. et al. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants. Nat. Commun. 7, 12989 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020). This paper describes the initial SV component of the gnomAD, which is a widely adopted reference resource for evaluating the frequencies and distributions of genetic variation in the human population.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abel, H. J. et al. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583, 83–89 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almarri, M. A. et al. Population structure, stratification, and introgression of human structural variation. Cell 182, 189–199 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrska-Bishop, M. et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell 185, 3426–3440 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019). In this study, members of the HGSVC apply an exhaustive combination of genomic technologies to thoroughly characterize all SVs present in the genomes of three parent–child trios, which yields one of the most comprehensive SV data sets produced to date for an individual set of genomes.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Audano, P. A. et al. Characterizing the major structural variant alleles of the human genome. Cell 176, 663–675 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebert, P. et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372, eabf7117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porubsky, D. et al. Recurrent inversion polymorphisms in humans associate with genetic instability and genomic disorders. Cell 185, 1986–2005 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hallast, P. et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature 621, 355–364 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halldorsson, B. V. et al. The sequences of 150,119 genomes in the UK Biobank. Nature 607, 732–740 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • All of Us Research Program Genomics Investigators. Genomic data in the All of Us research program. Nature 627, 340–346 (2024).

    Article 

    Google Scholar
     

  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022). This seminal publication from the T2T consortium describes the first complete (gapless) sequencing of a single human genome, which marks the beginning of the era of complete human genomes and pangenome graphs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, J. et al. Curated variation benchmarks for challenging medically relevant autosomal genes. Nat. Biotechnol. 40, 672–680 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurles, M. E., Dermitzakis, E. T. & Tyler-Smith, C. The functional impact of structural variation in humans. Trends Genet. 24, 238–245 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spielmann, M., Lupianez, D. G. & Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 19, 453–467 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat. Genet. 53, 779–786 (2021). This study is the largest published analysis of SVs based on long-read genome sequencing in a human population to date and demonstrates the value of long-read technologies in identifying and genotyping SVs — especially tandem repeats — associated with human traits and diseases.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmoud, M. et al. Structural variant calling: the long and the short of it. Genome Biol. 20, 246 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chin, C. S. et al. A diploid assembly-based benchmark for variants in the major histocompatibility complex. Nat. Commun. 11, 4794 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, K. & Ju, Y. S. Patterns and mechanisms of structural variations in human cancer. Exp. Mol. Med. 50, 98 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loh, P. R. et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559, 350–355 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Handsaker, R. E. et al. Large multiallelic copy number variations in humans. Nat. Genet. 47, 296–303 (2015). This study is a high-quality survey of mCNVs in the human population and includes the initial characterization of ‘runaway haplotypes’ in certain ancestry groups that have undergone a recent expansion in copy number.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmoud, M. et al. Utility of long-read sequencing for All of Us. Nat. Commun. 15, 837 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luning Prak, E. T. & Kazazian, H. H. Mobile elements and the human genome. Nat. Rev. Genet. 1, 134–144 (2000).

    Article 

    Google Scholar
     

  • Stewart, C. et al. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet. 7, e1002236 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, E. J. et al. The mobile element locator tool (MELT): population-scale mobile element discovery and biology. Genome Res. 27, 1916–1929 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, R. M. et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat. Genet. 51, 30–35 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kehr, B. et al. Diversity in non-repetitive human sequences not found in the reference genome. Nat. Genet. 49, 588–593 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, K. H. Y., Levy-Sakin, M. & Kwok, P.-Y. De novo human genome assemblies reveal spectrum of alternative haplotypes in diverse populations. Nat. Commun. 9, 3040 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, W. et al. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. Nature 611, 105–114 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, H. & Chu, J. Y. A brief review of short tandem repeat mutation. Genomics Proteom. Bioinform. 5, 7–14 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Willems, T., Gymrek, M., Highnam, G., Mittelman, D. & Erlich, Y. The landscape of human STR variation. Genome Res. 24, 1894–1904 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talkowski, M. E. et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am. J. Hum. Genet. 88, 469–481 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talkowski, M. E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525–537 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redin, C. et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat. Genet. 49, 36–45 (2017). This paper is the largest published analysis of balanced chromosomal abnormalities at nucleotide resolution in developmental disorders, which emphasizes the role of this unique class of SVs in the pathogenesis of severe pediatric disorders.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowther, C. et al. Balanced chromosomal rearrangements offer insights into coding and noncoding genomic features associated with developmental disorders. Preprint at medRxiv https://doi.org/10.1101/2022.02.15.22270795 (2022).

  • Chiang, C. et al. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 44, 390–397, S391 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abyzov, A. et al. Analysis of deletion breakpoints from 1,092 humans reveals details of mutation mechanisms. Nat. Commun. 6, 7256 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brand, H. et al. Paired-duplication signatures mark cryptic inversions and other complex structural variation. Am. J. Hum. Genet. 97, 170–176 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borg, K. et al. Molecular analysis of a constitutional complex genome rearrangement with 11 breakpoints involving chromosomes 3, 11, 12, and 21 and a approximately 0.5-Mb submicroscopic deletion in a patient with mild mental retardation. Hum. Genet. 118, 267–275 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Carvalho, C. M. et al. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum. Mol. Genet. 18, 2188–2203 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 41, 849–853 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho, C. M. et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 43, 1074–1081 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quinlan, A. R. & Hall, I. M. Characterizing complex structural variation in germline and somatic genomes. Trends Genet. 28, 43–53 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders, A. D. et al. Characterizing polymorphic inversions in human genomes by single-cell sequencing. Genome Res. 26, 1575–1587 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy-Sakin, M. et al. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat. Commun. 10, 1025 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermetz, K. E. et al. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet. 10, e1004139 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, R. L. et al. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome. Genome Biol. 18, 36 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chatron, N. et al. The enrichment of breakpoints in late-replicating chromatin provides novel insights into chromoanagenesis mechanisms. Preprint at bioRxiv https://doi.org/10.1101/2020.07.17.206771 (2020).

  • Weckselblatt, B., Hermetz, K. E. & Rudd, M. K. Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res. 25, 937–947 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This study reports the first observation of chromothripsis, which ignited entire sub-disciplines within human genetics and cancer genomics focused on identifying and characterizing extremely complex genomic rearrangements.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Pagter, M. S. et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 96, 651–656 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weckselblatt, B. & Rudd, M. K. Human structural variation: mechanisms of chromosome rearrangements. Trends Genet. 31, 587–599 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho, C. M. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, W., Zhang, F. & Lupski, J. R. Mechanisms for human genomic rearrangements. Pathogenetics 1, 4 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ottaviani, D., LeCain, M. & Sheer, D. The role of microhomology in genomic structural variation. Trends Genet. 30, 85–94 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balachandran, P. et al. Transposable element-mediated rearrangements are prevalent in human genomes. Nat. Commun. 13, 7115 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Startek, M. et al. Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination. Nucleic Acids Res. 43, 2188–2198 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, T. et al. The human pangenome project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itsara, A. et al. De novo rates and selection of large copy number variation. Genome Res. 20, 1469–1481 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandler, W. M. et al. Paternally inherited cis-regulatory structural variants are associated with autism. Science 360, 327–331 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kloosterman, W. P. et al. Characteristics of de novo structural changes in the human genome. Genome Res. 25, 792–801 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feusier, J. et al. Pedigree-based estimation of human mobile element retrotransposition rates. Genome Res. 29, 1567–1577 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belyeu, J. R. et al. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. Am. J. Hum. Genet. 108, 597–607 (2021). This study performed SV analyses from WGS of several thousand parent–child trios, which enabled the most accurate empirical estimates of SV mutation rates in humans to date.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halman, A. & Oshlack, A. Accuracy of short tandem repeats genotyping tools in whole exome sequencing data. F1000Research 9, 200 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature 589, 246–250 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, W., Zhang, F., Wang, Y., Gu, X. & Jin, L. Identification of copy number variation hotspots in human populations. Am. J. Hum. Genet. 87, 494–504 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conrad, D. F. & Hurles, M. E. The population genetics of structural variation. Nat. Genet. 39, S30–S36 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solís-Moruno, M., Batlle-Masó, L., Bonet, N., Aróstegui, J. I. & Casals, F. Somatic genetic variation in healthy tissue and non-cancer diseases. Eur. J. Hum. Genet. 31, 48–54 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, X. et al. Digital microfluidics-based digital counting of single-cell copy number variation (dd-scCNV Seq). Proc. Natl Acad. Sci. USA 120, e2221934120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, T. et al. A pan-tissue survey of mosaic chromosomal alterations in 948 individuals. Nat. Genet. 55, 1901–1911 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S., Carss, K. J., Halldorsson, B. V. & Cortes, A. Whole-genome sequencing of half-a-million UK Biobank participants. Preprint at medRxiv https://doi.org/10.1101/2023.12.06.23299426 (2023).

  • Jun, G. et al. Structural variation across 138,134 samples in the TOPMed consortium. Preprint at bioRxiv https://doi.org/10.1101/2023.01.25.525428 (2023).

  • Logsdon, G. A. et al. Complex genetic variation in nearly complete human genomes. Preprint at bioRxiv https://doi.org/10.1101/2024.09.24.614721 (2024).

  • Zhao, X. et al. Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. Am. J. Hum. Genet. 108, 919–928 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebler, J. et al. Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. Nat. Genet. 54, 518–525 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziaei Jam, H. et al. A deep population reference panel of tandem repeat variation. Nat. Commun. 14, 6711 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrison, E. et al. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36, 875–879 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Itsara, A. et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am. J. Hum. Genet. 84, 148–161 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruderfer, D. M. et al. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes. Nat. Genet. 48, 1107–1111 (2016). This study from the Exome Aggregation Consortium represents one of the first well-powered attempts to quantify both haploinsufficiency and triplosensitivity for all human protein-coding genes.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jakubosky, D. et al. Discovery and quality analysis of a comprehensive set of structural variants and short tandem repeats. Nat. Commun. 11, 2928 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno, S. Evolution by Gene Duplication (Springer-Verlag, 1970).

  • Dumas, L. et al. Gene copy number variation spanning 60 million years of human and primate evolution. Genome Res. 17, 1266–1277 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dennis, M. Y. & Eichler, E. E. Human adaptation and evolution by segmental duplication. Curr. Opin. Genet. Dev. 41, 44–52 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannuzzi, G. et al. The human-specific BOLA2 duplication modifies iron homeostasis and anemia predisposition in chromosome 16p11.2 autism individuals. Am. J. Hum. Genet. 105, 947–958 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boettger, L. M. et al. Recurring exon deletions in the HP (haptoglobin) gene contribute to lower blood cholesterol levels. Nat. Genet. 48, 359–366 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007). This study describes the initial observation that amylase gene copy number differs among human populations, correlates with salivary amylase protein abundance, and mirrors social transitions to agrarianism, collectively comprising one of the most famous examples of human adaptation due to positively selected SVs.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolognini, D. et al. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature 634, 617–625 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boettger, L. M., Handsaker, R. E., Zody, M. C. & McCarroll, S. A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881–885 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, C. R. et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82, 477–488 (2008). This study reported one of the first systematic analyses of balanced and unbalanced chromosomal abnormalities in individuals with autism spectrum disorder, revealing that large SVs are a major contributor to abnormal neurodevelopment.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, G. M. et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 43, 838–846 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coe, B. P. et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46, 1063–1071 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Douard, E. et al. Effect sizes of deletions and duplications on autism risk across the genome. Am. J. Psychiatry 178, 87–98 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, L. et al. Functional annotation of rare structural variation in the human brain. Nat. Commun. 11, 2990 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiang, C. et al. The impact of structural variation on human gene expression. Nat. Genet. 49, 692–699 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferraro, N. M. et al. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science 369, eaaz5900 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunning, A. C. et al. Recurrent de novo NAHR reciprocal duplications in the ATAD3 gene cluster cause a neurogenetic trait with perturbed cholesterol and mitochondrial metabolism. Am. J. Hum. Genet. 106, 272–279 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Usdin, K. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res. 18, 1011–1019 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vorechovsky, I. Transposable elements in disease-associated cryptic exons. Hum. Genet. 127, 135–154 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, X. et al. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol. 21, 185 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, L. et al. Complementary Alu sequences mediate enhancer-promoter selectivity. Nature 619, 868–875 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Middelkamp, S. et al. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells. Genome Med. 9, 9 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Heesch, S. et al. Genomic and functional overlap between somatic and germline chromosomal rearrangements. Cell Rep. 9, 2001–2010 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fudenberg, G. & Pollard, K. S. Chromatin features constrain structural variation across evolutionary timescales. Proc. Natl Acad. Sci. USA 116, 2175–2180 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oz-Levi, D. et al. Noncoding deletions reveal a gene that is critical for intestinal function. Nature 571, 107–111 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015). This study was among the first to demonstrate that SVs can cause Mendelian developmental diseases by altering the three-dimensional chromatin architecture of the genome rather than by direct disruption of coding genes themselves.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monlong, J. et al. Global characterization of copy number variants in epilepsy patients from whole genome sequencing. PLoS Genet. 14, e1007285 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Haene, E. & Vergult, S. Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genet. Med. 23, 34–46 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jakubosky, D. et al. Properties of structural variants and short tandem repeats associated with gene expression and complex traits. Nat. Commun. 11, 2927 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scott, A. J., Chiang, C. & Hall, I. M. Structural variants are a major source of gene expression differences in humans and often affect multiple nearby genes. Genome Res. 31, 2249–2257 (2021). This study reports the most recent SV analyses from the GTEx project, which is the largest and best-powered quantification of the effects of SVs on gene expression in humans available to date.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rice, A. M. & McLysaght, A. Dosage sensitivity is a major determinant of human copy number variant pathogenicity. Nat. Commun. 8, 14366 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aguirre, M., Rivas, M. A. & Priest, J. Phenome-wide burden of copy-number variation in the UK biobank. Am. J. Hum. Genet. 105, 373–383 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell https://doi.org/10.1016/j.cell.2022.06.036 (2022). This study reports the aggregation and systematic analysis of rare CNVs in nearly one million people, enabling genome-wide association scans of rare deletions and duplications for 54 diseases and the construction of well-calibrated haploinsufficiency and triplosensitivity metrics for all autosomal protein-coding genes.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stankiewicz, P. & Lupski, J. R. Structural variation in the human genome and its role in disease. Annu. Rev. Med. 61, 437–455 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarroll, S. A. Extending genome-wide association studies to copy-number variation. Hum. Mol. Genet. 17, R135–R142 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Craddock, N. et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mace, A. et al. CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits. Nat. Commun. 8, 744 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. R. et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat. Commun. 11, 255 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459, 569–573 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hujoel, M. L. A. et al. Influences of rare copy-number variation on human complex traits. Cell 185, 4233–4248 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barton, A. R., Sherman, M. A., Mukamel, R. E. & Loh, P. R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 53, 1260–1269 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Payer, L. M. et al. Structural variants caused by Alu insertions are associated with risks for many human diseases. Proc. Natl Acad. Sci. USA 114, E3984–E3992 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamitaki, N. et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582, 577–581 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zablotsky, B. et al. Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. Pediatrics 144, e20190811 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Bell, J. et al. A total population study of diagnosed chromosome abnormalities in Queensland, Australia. Clin. Genet. 22, 49–56 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Karnebeek, C. D., Jansweijer, M. C., Leenders, A. G., Offringa, M. & Hennekam, R. C. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur. J. Hum. Genet. 13, 6–25 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Verma, R. S. & Dosik, H. Incidence of major chromosomal abnormalities in a referred population for suspected chromosomal aberrations: a report of 357 cases. Clin. Genet. 17, 305–308 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright, C. F. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385, 1305–1314 (2015). This study describes the analysis and clinical interpretation of CNVs detected by chromosomal microarray in the Deciphering Developmental Disorders project, which provided one of the most comprehensive estimates of diagnostic yield for CNV testing in paediatric developmental disorders.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wapner, R. J. et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 367, 2175–2184 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sajan, S. A. et al. Both rare and de novo copy number variants are prevalent in agenesis of the corpus callosum but not in cerebellar hypoplasia or polymicrogyria. PLoS Genet. 9, e1003823 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, S. J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magenis, R. E., Brown, M. G., Lacy, D. A., Budden, S. & LaFranchi, S. Is Angelman syndrome an alternate result of del(15)(q11q13)? Am. J. Med. Genet. 28, 829–838 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Driscoll, D., Budarf, M. & Emanuel, B. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am. J. Hum. Genet. 50, 924 (1992).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harel, T. & Lupski, J. R. Genomic disorders 20 years on-mechanisms for clinical manifestations. Clin. Genet. 93, 439–449 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiss, L. A. et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 358, 667–675 (2008). This study reports the initial discovery of reciprocal CNVs at the 16p11.2 chromosomal locus and autism spectrum disorder; this 16p11.2 CNV is now recognized as one of the single most common genetic causes of abnormal human neurodevelopment.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarthy, S. E. et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat. Genet. 41, 1223–1227 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuttle, X. et al. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility. Nature 536, 205–209 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smolen, C. & Girirajan, S. The gene dose makes the disease. Cell 185, 2850–2852 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, H. L. et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J. Med. Genet. 40, 575–584 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Rivera, E. et al. Genetic drivers of kidney defects in the DiGeorge syndrome. N. Engl. J. Med. 376, 742–754 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindsay, E. A. et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101 (2001). This study was one of the first to demonstrate that loss of a single gene (TBX1) within a larger genomic disorder CNV locus (22q11.2 deletion) is individually associated with one of the constituent phenotypes commonly observed in CNV carrier patients, which provided important empirical evidence for an oligogenic basis of genomic disorders.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, J. et al. Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster. Nat. Commun. 9, 2548 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, M. D. et al. NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models. PLoS Genet. 16, e1008590 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pizzo, L. et al. Functional assessment of the “two-hit” model for neurodevelopmental defects in Drosophila and X. laevis. PLoS Genet. 17, e1009112 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Girirajan, S. et al. Phenotypic heterogeneity of genomic disorders and rare copy-number variants. N. Engl. J. Med. 367, 1321–1331 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albers, C. A. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat. Genet. 44, 435–439 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat. Med. 26, 1912–1918 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Owen, D. et al. Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics 19, 867 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilissen, C. et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 511, 344–347 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Werling, D. M. et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50, 727–736 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism. Cell 171, 710–722 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 583, 96–102 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poultney, C. S. et al. Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder. Am. J. Hum. Genet. 93, 607–619 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazazian, H. H. Jr. et al. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coe, B. P. et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat. Genet. 51, 106–116 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanta, O., Noor, A. & Sebat, J. The effects of common structural variants on 3D chromatin structure. BMC Genomics 21, 95 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allou, L. et al. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 592, 93–98 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia-parkinsonism by integrating genome and transcriptome assembly. Cell 172, 897–909 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maia, N., Nabais Sá, M. J., Melo-Pires, M., de Brouwer, A. P. M. & Jorge, P. Intellectual disability genomics: current state, pitfalls and future challenges. BMC Genomics 22, 909 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kaplanis, J. et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 586, 757–762 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, D. T. et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749–764 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaefer, G. B. & Mendelsohn, N. J. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet. Med. 15, 399–407 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardner, E. J. et al. Contribution of retrotransposition to developmental disorders. Nat. Commun. 10, 4630 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torene, R. I. et al. Mobile element insertion detection in 89,874 clinical exomes. Genet. Med. 22, 974–978 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfundt, R. et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet. Med. 19, 667–675 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vissers, L. et al. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. Genet. Med. 19, 1055–1063 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowther, C. et al. Systematic evaluation of genome sequencing as a first-tier diagnostic test for prenatal and pediatric disorders. Am. J. Hum. Genet. 110, 1454–1469 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lord, J. et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet 393, 747–757 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talkowski, M. E. et al. Clinical diagnosis by whole-genome sequencing of a prenatal sample. N. Engl. J. Med. 367, 2226–2232 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanchis-Juan, A. Complex structural variants resolved by short-read and long-read whole genome sequencing in Mendelian disorders. Genome Med. 10, 95 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahlster, L. et al. Familial thrombocytopenia due to a complex structural variant resulting in a WAC-ANKRD26 fusion transcript. J. Exp. Med. 218, e20210444 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Witt, D. et al. Genome sequencing identifies complex structural MLH1 variant in unsolved Lynch syndrome. Mol. Genet. Genom. Med. 11, e2151 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lilleväli, H. et al. Genome sequencing identifies a homozygous inversion disrupting QDPR as a cause for dihydropteridine reductase deficiency. Mol. Genet. Genom. Med. 8, e1154 (2020).

    Article 

    Google Scholar
     

  • Pagnamenta, A. T. et al. The impact of inversions across 33,924 families with rare disease from a national genome sequencing project. Am. J. Hum. Genet. 111, 1140–1164 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höps, W. et al. Impact and characterization of serial structural variations across humans and great apes. Nat. Commun. 15, 8007 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khera, A. V. et al. Whole genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation 139, 1593–1602 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depienne, C. & Mandel, J.-L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrison, E. & Guarracino, A. Unbiased pangenome graphs. Bioinformatics 39, btac743 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H., Feng, X. & Chu, C. The design and construction of reference pangenome graphs with minigraph. Genome Biol. 21, 265 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales, J. et al. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature 604, 310–315 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article 

    Google Scholar
     

  • Eggertsson, H. P. et al. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. Nat. Commun. 10, 5402 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. Genome Biol. 20, 291 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venner, E. et al. Whole-genome sequencing as an investigational device for return of hereditary disease risk and pharmacogenomic results as part of the All of Us Research Program. Genome Med. 14, 34 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherman, M. A. et al. Large mosaic copy number variations confer autism risk. Nat. Neurosci. 24, 197–203 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riggs, E. R. et al. Towards an evidence-based process for the clinical interpretation of copy number variation. Clin. Genet. 81, 403–412 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 43, D789–D798 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Uddin, M. et al. A high-resolution copy-number variation resource for clinical and population genetics. Genet. Med. 17, 747–752 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Zarrei, M. et al. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum. Mol. Genet. 32, 2411–2421 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maxwell, E. K. et al. Profiling copy number variation and disease associations from 50,726 DiscovEHR Study exomes. Preprint at bioRxiv https://doi.org/10.1101/119461 (2017).

  • Babadi, M. et al. GATK-gCNV enables the discovery of rare copy number variants from exome sequencing data. Nat. Genet. 55, 1589–1597 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, R. L. The Landscape and Consequences of Structural Variation in the Human Genome. Thesis, Harvard University (2022).

  • Google News

    Leave a Reply

    Your email address will not be published. Required fields are marked *